Investigating the thermal runaway and propagation behaviour of commercial lithium ion batteries: Influence of initiation mode and state of charge

Thematic block:


Other authors:




Lithium ion batteries (LIBs) are omnipresent in our daily lives. LIBs power our laptops and mobile phones, are the energy storage of choice for the electrification of vehicles, and play a vital role in the layout of the storage devices needed for the balancing of the grid.
Research groups all over the world work on the improvement of LIBs, e.g., an increase in energy density and cycle-life as well as a decrease in costs. In recent years, investigations concerning the LIB’s safety continuously gain importance, especially, pushed by incidents with electric vehicles. They are multiple levels at which safety measures can be implemented, i.e., material, cell, battery and system level. Accordingly, the behaviour of LIBs under abuse/misuse conditions are often investigated on those levels.
Here, we focus on the safety on cell level. Generally, the abuse/misuse leads to an increase in heat in the cell at worst triggering a chain of exothermic reactions. Hence, the cell’s temperature rapidly increases leading to the so-called thermal runaway (TR) possibly accompanied by flames and/or explosion of the cell. Herein, different hazardous features during the TR of different commercial cells are discussed such as temperature, flames, projectiles and toxic gases. In order to gain further insights on the parameters influencing the TR, different type of initiation modes, e.g., external heating, overcharging, nail penetration and external short circuiting are introduced. Moreover, the state of charges (SOCs) are varied to differ the amount of electrical energy present in the cells.
Next to the characteristic of the TR of a single cell, the investigation of the propagation of the TR from one cell to another is an important parameter, as a battery is usually composed of multiple cells. Due to the close packaging of the single cells, the TR of one cell is often able to initiate the TR of the surrounding cells, finally, causing the TR of the whole battery. Herein, the propagation ability is studied depending on the cell type and SOC.
Finally, the results shall be used to formulate (cell specific) conditions for a safe transport of LIBs. Moreover, the gained knowledge can support the development of advanced measures to increase the safety on cell level in the future.

Would you like to contact this author?
We are happy to forward your request / feedback.